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Abstract

Simple but exact integral formulations are presented for the velocity and temperature distributions and for the
friction factor and Nusselt number in fully developed turbulent ¯ow and convection between parallel plates in terms
of the dimensionless local turbulent shear stress and heat ¯ux density. Essentially exact values for these quantities
have been obtained by evaluating the integrals numerically for a number of special conditions for which the

uncertainty of the integrands is minimal. Such values provide criteria for evaluation of experimental data and more
approximate solutions, as well as a basis for the construction of generalized correlating equations. 7 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The di�erential and integral formulations for forced
convection in turbulent ¯ow between parallel plates of

unlimited extent are somewhat simpler than those for
round tubes by virtue of the absence of curvature.
Nevertheless, the behavior in this con®guration has
received less attention than that in round tubes and

annuli because (1) it only constitutes a hypothetical
limiting case for a rectangular channel of asymptoti-
cally large aspect ratio and a circular annulus with an

aspect ratio approaching unity, and (2) rectangular
channels and circular annuli of extreme aspect ratios

have few practical applications. The principal ones
involve heat (or mass) transfer from one surface to the
other through a ¯uid stream or heat transfer from

both surfaces to the ¯uid in compact heat exchangers.
However, the latter are seldom operated in the turbu-
lent regime owing to the large pressure drop associated

with small spacings and high velocities.
Churchill and coauthors [1±7,9] have shown that

fully developed ¯ow and convection in all one-
dimensional channels may be expressed in the form

of simple but exact integrals of the local fractions
of the shear stress and the heat ¯ux density due to
the turbulent ¯uctuations. Furthermore, they have

derived very accurate correlating equations for the
local turbulent shear stress in round tubes and par-
allel-plate channels. Although correlating equations

of comparable accuracy and generality have not yet
been achieved for the local turbulent heat ¯ux den-
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sity, the e�ect of such uncertainty may be avoided
or minimized for some special conditions. The
speci®c aspects of this body of prior work that are

relevant to the current work may be summarized as
follows. Churchill and Chan [7] ®rst derived exact
integral expressions for the turbulent ¯ow in one-

dimensional channels in terms of the ratio of the
local turbulent shear stress to the local shear stress
at the wall and showed that such expressions are

not only simpler but also free of the intrinsic
anomalies associated with the eddy-viscosity and
mixing-length models. Churchill and Chan [5,6] sub-
sequently developed a single generalized correlating

equation with an asymptotic structure for the local
turbulent shear stress in both round tubes and par-
allel-plate channels and used this expression to

develop generalized and even more accurate correlat-
ing equations for the time±mean velocity distri-
bution and the friction factor. (The non-

chronological order of these references is an artifact

of the process of review and publication.) Churchill
[2,3] showed that the corresponding integral ex-
pressions were possible and advantageous for heat

transfer and also that subtle improvements could be
attained by expressing the di�erential and integral
balances for both momentum and energy in terms

of the local fraction of the transport due to turbu-
lence rather than as a fraction of the value at the
wall.

The objective of the work reported herein has been
to develop improved numerical results for convection
in turbulent ¯ow corresponding to those of Heng et al.
[9] for a round tube. The formulations and computed

values are for fully developed convection with two
thermal boundary conditions: (1) equal uniform heat-
ing of the ¯uid stream by both plates and (2) heat

transfer through the ¯uid from one isothermal plate to
another at a lower temperature. The latter condition is
equivalent to equal uniform heating of one plate and

cooling of the other.

Nomenclature

a radius of circular tube
a+ dimensionless radius of circular tube,

a(twr )
1/2/m

b half-spacing of parallel-plate channel
b+ dimensionless half-spacing of parallel-

plate channel, b(twr )
1/2/m

c speci®c heat capacity of ¯uid at constant
pressure

e e�ective roughness of plate

f Fanning friction factor, 2tw/ru
2
m

j local heat ¯ux density in y-direction
jw heat ¯ux density from the wall at y=0
k thermal conductivity of ¯uid

Nub Nusselt number for heat transfer between
plates, jwb/k(TwÿTb)

Nu4b Nusselt number for heat transfer from

both plates, 4jwb/k(TwÿTm)
Pr Prandtl number
Prt turbulent Prandtl number de®ned by

Eq. (9)
Reb Reynolds number based on half-spacing

between plates, bumr/m
Re4b Reynolds number based on hydraulic di-

ameter, 4bumr/m
Sc Schmidt number
T temperature

T+ dimensionless temperature, k(TwÿT )
(twr )

1/2/mjw
T ' ¯uctuation in temperature

(T 'v ')++ dimensionless heat ¯ux density due to tur-
bulence, rcT 'v '/j

u velocity component in x-direction

u+ dimensionless velocity component in x-
direction, u(r/tw)

1/2

u ' ¯uctuation of velocity component in x-

direction
(u 'v ')++ dimensionless shear stress due to turbu-

lence, ÿru 'v '/t
v ' ¯uctuation of velocity component in y-

direction
x coordinate in direction of ¯ow
y distance from wall

y+ dimensionless distance from wall,
y(twr )

1/2/m
Z fractional distance from central plane,

1ÿ( y+/b+).

Greek symbols

g fractional deviation of heat ¯ux density
from linearity [see Eq. (29)]

m dynamic viscosity of ¯uid

r speci®c density of ¯uid
t shear stress.

Subscripts

b at central plane
m mean value
w at wall.
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2. Momentum transfer

The time-averaged and once-integrated di�erential

balance for momentum in the direction away from
the wall for steady fully developed isothermal ¯ow
of an incompressible Newtonian ¯uid between paral-

lel plates of unlimited extent with a total spacing of
2b may be expressed in the following simpli®ed
form suggested by Churchill [3]:�
1ÿ y�

b�

�
�1ÿ �u 0v 0���� � du�

dy�
�1�

The superiority of Eq. (1) over prior formulations

is a consequence of the use of the term
�u 0v 0��� � ÿru 0v 0=t, which has physical signi®cance
as the local fraction of the transport of momentum

away from the wall due to turbulence and thereby
avoids any heurism or empiricism such as that in-
herent in the eddy-viscosity and mixing-length

models. Eq. (1) may be integrated formally to
obtain the following exact expression for the time±
mean velocity distribution:

u� �
� y�

0

�
1ÿ y�

b�

�
�1ÿ �u 0v 0����dy�

� y� ÿ � y
��2

2b�
ÿ
� y�

0

�
1ÿ y�

b�

�
�u 0v 0���dy�

� b�

2

�1
Z 2

�1ÿ �u 0v 0����dZ 2

� b�

2
�1ÿ Z 2� ÿ b�

2

�1
Z 2

�u 0v 0��� dZ 2 �2�

Each of the four forms on the right-hand-side of
Eq. (2) has its own advantages. For example, the

two partially integrated forms reveal that the contri-
bution of turbulence is simply a deduction from the
well-known expressions for purely laminar ¯ow at

the same value of b+, while the expressions in terms
of Z = 1ÿ( y+/b+) are somewhat simpler in form
than the more explicit ones in terms of y+. It follows

by means of integration by parts that:�
2

f

�1=2

� u�m �
1

b�

�b�
0

u�dy�

�
�b�
0

�
1ÿ y�

b�

�2

�1ÿ �u 0v 0����dy�

� b�

3
ÿ
�b�
0

�
1ÿ y�

b�

�2

�u 0v 0���dy� �3�

Churchill [4] has proposed on the basis of the recent
experimental data of Zagarola [15] for the shear fric-
tion and the time±mean velocity distribution in round

pipes, the following modi®cation of the correlating
equation of Churchill and Chan [6] for the turbulent

shear stress in turbulent ¯ow in a round tube:

�u 0v 0��� �

0@"0:7�y�
10

�3
#ÿ8=7

�
����� exp

� ÿ1
0:436y�

�

ÿ 1

0:436a�

�
1� 6:95y�

a�

������
ÿ8=7

1Aÿ7=8 �4�

Eq. (4) may be inferred, on the basis of the analogy of
MacLeod [12], to be valid for ¯ow between parallel

plates if b+ is simply substituted for a+. It is presumed
on the basis of comparisons with various sets of exper-
imental data and predicted values of u and u 'v ' to pro-

vide accurate predictions for b+ > 300 and all y+ [6].
The nominal limitation to b+ > 300 is due to the van-
ishing of the ``overlap'' regime (the semilogarithmic
regime of the velocity distribution), which appears in

Eq. (4) as the exponential term.
The values of u+ computed from Eq. (2) using
�u 0v 0��� from Eq. (4) may be represented quite closely

by:

u� �

8>>><>>>:
2664

� y��2

1� y� ÿ exp

(
ÿ 7

4

�
y�

10

�4
)3775

ÿ3

�
"

1

0:436
lnf1� 13:35y�g

� 6:824

�
y�

b�

�2

ÿ5:314
�
y�

b�

�3
#ÿ39>>>=>>>;

ÿ1=3

�5�

while those of u+m, as computed from Eq. (3) using
�u 0v 0��� from Eq. (4) may be represented even more

closely by:

�
2

f

�1=2

� u�m � 4:615ÿ 155:3

b�
� 1

0:436
lnfb�g �6�

The terms in ( y+/b+)2 and ( y+/b+)3 in Eq. (5)
account for the contribution of the wake to the time±
mean velocity distribution, while the unfamiliar, theor-

etically based term in (b+)ÿ1 in Eq. (6) is a conse-
quence of accounting for the decreased velocity in the
boundary layer. Eqs. (5) and (6) are presumed to be

more accurate than any prior expressions in the litera-
ture, but numerical integration of Eqs. (2) and (3) is
recommended for even greater accuracy. Eqs. (5) and
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(6) may be extended speculatively for naturally rough
plates by dividing the argument of the logarithmic

terms by [1+0.301(e/b )b+]. Predictions of u+ and u+m
or f for speci®ed values of Re4b=4b+u+m may readily
be obtained by iterative solution of Eq. (6) with u�m
replaced by Re4b=4b� to determine the corresponding
value of b+.
Future improved experimental measurements or nu-

merically computed values of �u 0v 0���, u+, and/or f
for parallel plates may support the modi®cation of the
coe�cients 0.7, 0.436, 6.95, 13.35, 6.824, 5.314, 4.615

and 155.3 and of the exponents of ÿ8/7 and ÿ3 of
Eqs. (4)±(6), but the resulting changes in the predic-
tions of these three expressions may be expected to be
quite small.

3. Heat transfer

The time-averaged energy balance for steady fully
developed convection in the turbulent ¯ow of a Newto-

nian ¯uid with invariant physical properties and negli-
gible viscous dissipation between parallel plates of
unlimited extent may be written in correspondence to
Eq. (1) as:

j

jw
�1ÿ �T 0v 0���� � dT �

dy�
�7�

where T+ 0 k(TwÿT )(twr )
1/2/mjw and �T 0v 0��� �

rcT 0v 0=j are de®ned so as to be analogous to u+ and
�u 0v 0���: Even so, the behavior described by Eq. (7)

di�ers signi®cantly from that of Eq. (1) because
�T 0v 0��� is a function of the Prandtl number, Pr=cm/
k, as well as of �u 0v 0��� or of y+ and b+, and j/jw is

not equal to (t/tw)=1ÿ( y+/b+) for any thermal
boundary conditions. For convenience, Eq. (7) may be
expressed as

j

jw
�
"
1� Pr

Prt

 
�u 0v 0���

1ÿ �u 0v 0���
!#

dT �

dy�
�8�

where by comparison of Eqs. (7) and (8),

Prt

Pr
�
 
�u 0v 0���

1ÿ �u 0v 0���
! 

1ÿ �T 0v 0���
�T 0v 0���

!
�9�

Thus, Prt/Pr may be interpreted simply as a symbol
representing the local ratio of the transport of momen-
tum by turbulence to that by molecular motion,

divided by the equivalent ratio for the transport of
energy. The quantities involved in this de®nition of
Prt/Pr are obviously all physically meaningful and

directly measurable. It is unnecessary to invoke eddy
di�usional models for transport by turbulence to
obtain Eqs. (8) and (9). The advantage of Eq. (8) over

Eq. (7) accrues from the relative invariance of Prt as
compared to that of �T 0v 0���:
The results that follow are based on Eq. (8) together

with Eqs. (2)±(4). It is obviously necessary to have ex-
pressions for j/jw and Prt/Pr. The ®rst of these two

ratios depends on the thermal boundary conditions,
whereas the latter does not. Accordingly, Prt/Pr will be
considered separately in advance.

3.1. Prediction of the turbulent Prandtl number

Abbrecht and Churchill [1] demonstrated for a
round tube that Prt is independent of the thermal

boundary condition at the wall by determining this
quantity experimentally for developing convection in
fully developed ¯ow and further found that their

values of Prt were in agreement with those from
measurements of heat transfer across a parallel-plate
channel for b+=a+. The latter observation may be

recognized to be in accord with the analogy of
MacLeod [12]. These ®ndings are also in accord with
an expression derived by Yahkot et al. [14], using
renormalization group theory, that relates Prt to Pr

and �u 0v 0��� only and is thereby implied to be valid
for all geometries and thermal boundary conditions.
Experimental data for Prt in the turbulent core for

Prr0.7 have been correlated by Jischa and Rieke [10]
and others by means of empirical expressions such as

Prt � 0:85� 0:015

Pr
�10�

but attempts at generalized correlation for the region

near the wall and for low-Prandtl-number ¯uids have
been less successful. The recent computations of the
equivalent of Prt by Papavassiliou and Hanratty [13]
by both Eulerian and Lagrangian direct numerical

simulations are in fair accord with Eq. (10) and at
least quantitatively, with one signi®cant exception,
with the predictions of Yahkot et al. [14]. That excep-

tion is near the wall for asymptotically large values of
Pr. For large values of Pr, the best experimental
results for the heat transfer coe�cient, which are lim-

ited to Pr < 100, imply and the expression of Yahkot
et al. [14] predicts the approach to a ®nite limiting
value of Prt as y

+4 0. On the other hand, the best ex-
perimental results for the rate of electrochemically dri-

ven mass transfer, which extend to much larger values
of Sc, imply and the calculations of Papavassiliou and
Hanratty [13] predict an inde®nite increase in Prt as

y+4 0 for very large values of Pr. This uncertainty in
the turbulent Prandtl number precludes the calculation
of de®nitive values of the Nusselt number in general at

the present time. Fortunately, as described below, the
e�ect of this uncertainty may be avoided or minimized
for most conditions of practical interest.
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3.2. Unequal uniform temperatures on the plates

This thermal boundary condition has been widely

used both experimentally and computationally because
of the resulting simplicity of the behavior, namely the
existence of (or experimentally at least the close

approach to) a uniform heat ¯ux density across the
channel. Furthermore, for fully developed convection,
this thermal boundary condition is equivalent to that

for one uniformly heated and one equally cooled plate.
Then for j=jw, Eq. (8) may be integrated formally to
obtain

T � �
� y�

0

dy�

1� Pr

Prt

 
�u 0v 0���

1ÿ �u 0v 0���
! �11�

for which it follows that

Nub � b�

T �b
� 1�1

0

dZ

1� Pr

Prt

 
�u 0v 0���

1ÿ �u 0v 0���
! �12�

For both laminar ¯ow, for which �u 0v 0��� � 0, and
turbulent ¯ow in the limit of Pr = 0, Eq. (12) reduces
to Nub=1.
Insofar as Pr=Prt for all y

+, Eq. (11) reduces to

T � �
� y�

0

�1ÿ �u 0v 0����dy� �13�

and Eq. (12) to

Nub � 1�1
0

�1ÿ �u 0v 0����dZ
� 1

�1ÿ �u 0v 0����m
�14�

Thus, Nub for Pr=Prt is simply equal to the reciprocal
of the integrated-mean value of �1ÿ �u 0v 0���� over the
cross-section. Values of Nub calculated from Eq. (14)

using �u 0v 0��� from Eq. (4) are listed in Table 1 for a
series of values of b ' under the heading Pr = 0.867,
which, according to Eq. (10), corresponds to Pr=Prt.

Both experimental data and the predictive equation of
Yahkot et al. [14] provide support for the invariance
of Prt across the entire channel for nearly the same

value of Pr.
For su�ciently larger values of Pr, the development

of the temperature ®eld is essentially con®ned to the
region very near the wall, where, in accordance with

the ®rst term of Eq. (4),

�u 0vI��� � 0:7

�
y�

10

�3

�15�

Then, insofar as Prt may be postulated to be invariant
in this regime, the integral of Eq. (11) may be carried

out analytically to obtain

T � � 10

�0:7�1=3
�
Pr

Prt

ÿ 1

�4=3

"
Pr

3 Prt

 
1

2
ln

�
�1� z�2
1ÿ z� z2

�

� 31=2 tan ÿ1
�
2zÿ 1

31=2

�
� 31=2p

6

!
ÿ z

#
�16�

where

z � �0:7�1=3
�
Pr

Prt

ÿ 1

�1=3�
y�

10

�
For large values of Pr/Prt and a su�ciently large value
of y+ (say 11), Eq. (16) approaches

T �1 �
20p

�
Pr

Prt

�
33=2�0:7�1=3

�
Pr

Prt

ÿ 1

�4=3
�17�

from which it follows that

Nub � 0:07343

�
Prt

Pr

��
Pr

Prt

ÿ 1

�4=3

Reb

�
f

2

�1=2

�18�

For Pr>>Prt=0.85, which follows from Eq. (10),

Nub40:07752Pr1=3 Reb

�
f

2

�1=2

�19�

As inferred from the implicit independence of the heat

transfer coe�cient from the characteristic dimension,
Eqs. (16)±(19) are applicable for all channels. Also, it
may be inferred from the derivation that these ex-

pressions are applicable for fully developed convection
with any thermal boundary condition at y+=0.
Eqs. (11) and (12) are exact, and, insofar as the pos-

tulated independence of Prt from y+ is valid, Eqs. (13)
and (14) and (15)±(18) as well.
Eq. (10) and other empirical expressions for Prt

have generally been based on the most reliable exper-
imental data for this quantity, namely the values deter-
mined for the turbulent core for ¯uids with 0.7 < Pr
< 100. Nevertheless, this expression might be expected

to provide an adequate approximation for the predic-
tion of T+ and Nu2b for all values of Pr since the term

Pr

Prt

 
�u 0v 0���

1ÿ �u 0v 0���
!

in Eqs. (11) and (12) is small with respect to unity near
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the wall by virtue of small values of �u 0v 0��� and for

Pr < 0.7 for all y+ by virtue of small values Pr/Prt.
That is, the e�ect of Prt in the two regimes in which it
is most uncertain is dampened within the integrand

and then further by the integration itself. Calculated
values of Nub for a wide range of values of Pr, based
on the use of Prt from Eq. (10) in Eq. (12), are

included in Table 1. Those for large values of Pr are
expressed as Nub/0.07752Pr

1/3 Reb ( f/2)
1/2 to restrain

their magnitude and reveal their approach to the
asymptotic expression for Pr 4 1. As would be
expected the approximate values are consistent with

the more certain ones for Pr=0, 0.867 and 1.

3.3. Equal uniform heating from both plates

Before deriving expressions for the temperature dis-

tribution and the Nusselt number for equal uniform
heating from both walls of the channel, it is necessary
to have an expression for j/jw as well as for �u 0v 0���
and Prt. For fully developed symmetrical convective
heating of a ¯uid in either laminar or turbulent ¯ow

between parallel plates, it may be shown from a seg-
mental energy balance that

j

jw
� 1

b�

�b�
y�

u�

u�m

�
@T=@x

@Tm=@x

�
dy� �20�

For equal uniform heating on both plates, @T/
@x=@Tm/@x, and Eq. (20) reduces to

j

jw
� 1

b�

�b�
y�

 
u�

u�m

!
dy� �

�Z
0

 
u�

u�m

!
dZ �21�

Before determining the behavior of j/jw in general, it is

useful to examine four limiting cases. Thus, for the
hypothetical case of plug ¯ow, Eq. (21) reduces to

j

jw
� 1ÿ y�

b�
� Z �22�

while for laminar ¯ow

j

jw
� Z

2
�3ÿ Z 2� �23�

For very small values of y+, such that Eq. (15) is ap-
plicable,

u�4y� ÿ 7

4

�
y�

10

�4

ÿ� y
��2

2b�
. . . �24�

Table 1

Predicted Nusselt numbers for fully developed turbulent convection between isothermal platesa

Nub for small values of Pr

b+ Reb� 10ÿ3 Pr

0 0.001 0.01 0.10 0.70 0.867 1.0

< 60 < 0.65 1.0 1.0 1.0 1.0 1.0 1.0 1.0

500 9.279 1.0 1.002 1.113 3.337 14.164 16.434 18.108

1000 20.312 1.0 1.003 1.230 5.609 26.739 31.196 34.490

5000 120.66 1.0 1.018 2.126 21.857 118.796 139.758 155.321

10,000 257.36 1.0 1.036 3.186 40.535 226.870 267.593 297.970

50,000 1471.4 1.0 1.175 10.834 175.258 1027.90 1218.26 1360.650

Nub/0.07752Pr
1/3 Reb ( f/2)

1/2 for large values of Pr

b+ Reb� 10ÿ3 Pr

1.0 10 100 1000 10,000 25,000 1

500 9.279 0.4672 0.7973 0.9431 0.9858 0.9979 0.9990 1.000

1000 20.312 0.4449 0.7848 0.9396 0.9821 0.9967 0.9989 1.000

5000 120.66 0.4007 0.7550 0.9288 0.9796 0.9962 0.9977 1.000

10,000 257.36 0.3844 0.7426 0.9277 0.9789 0.9954 0.9978 1.000

50,000 1471.4 0.3510 0.7177 0.9258 0.9782 0.9922 0.9984 1.000

a Values of Reb based on Eq. (6).
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and from Eq. (21)

j

jw
41ÿ � y

��2
2b�u�m

"
1ÿ 0:07

�
y�

10

�3

ÿ y�

3b�
. . .

#
�25�

For the other limit of y+ 4 b+, it may be inferred

that

j

jw
4

�
1ÿ y�

b�

�
u�b
u�m
� Zu�b

u�m
�26�

For intermediate values of y+, it is preferable in terms
of accuracy to re-express Eq. (21) in terms of �u 0v 0���
by means of Eqs. (2) and (3), resulting in

j

jw
�

1

b�

�b�
y�

 � y�

0

�1ÿ �u 0v 0����
�
1ÿ y�

b�

�
dy�

!
dy��b�

0

�1ÿ �u 0v 0����
�
1ÿ y�

b�

�2

dy�

�27�

which may be reduced by integration by parts to

j

jw
�

�
1ÿ y�

b�

�� y�

0

�1ÿ �u 0v 0����
�
1ÿ y�

b�

�
dy� �

�b�
y�
�1ÿ �u 0v 0����

�
1ÿ y�

b�

�2

dy��b�
0

�1ÿ �u 0v 0����
�
1ÿ y�

b�

�2

dy�
�28�

Eq. (28) may be noted to reduce to the equivalent of

Eq. (26) in terms of �u 0v 0��� as y+4 b+.
In the interests of accuracy and convenience in in-

terpretation, j/jw may be replaced as a variable by a

perturbation g de®ned by

j

jw
�
�
1ÿ y�

b�

�
�1� g� �29�

Thus, g represents the deviation from the linear
behavior for plug ¯ow as given by Eq. (22).

Values of g computed from Eqs. (28) and (29) using
�u 0v 0��� from Eq. (4) are listed in Table 2 for several
values of b+ and y+ or y+/b+. The deviation from

linearity, as represented by the magnitude of g, is seen
to be signi®cant near the central plane. The neglect of
this quantity or the even more erroneous postulate of

j=jw are the major sources of error in many prior
theoretical results.
Eq. (8), after introduction of g from Eq. (27), may

be expressed in the following integral form:

T � �
� y�

0

�1� g�
�
1ÿ y�

b�

�
dy�

1� Pr

Prt

 
�u 0v 0���

1ÿ �u 0v 0���
! �30�

It follows from Eqs. (21) and (30) and integration by
parts that

T �m �
1

b�

�b�
0

T �
 
u�

u�m

!
dy�

�
�b�
0

�1� g�2
�
1ÿ y�

b�

�2

dy�

1� Pr

Prt

 
�u 0v 0���

1ÿ �u 0v 0���
! �31�

Then

Nu4b � 4b�

T �m
� 4

�1
0

�1� g�2
�
1ÿ y�

b�

�2

d

�
y�

b�

�
1� Pr

Prt

 
�u 0v 0���

1ÿ �u 0v 0���
!
� 12�1

0

�1� g�2 dZ3

1� Pr

Prt

 
�u 0v 0���

1ÿ �u 0v 0���
! �32�
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The choice of 4b as the characteristic dimension is in
accord with the conventional use of the hydraulic di-

ameter. The alternative choice of b for heat transfer
across a channel has the obvious objective of resulting
in Nub=1 in laminar ¯ow and for Pr=0.

For Pr=0, Eq. (30) reduces to

T � �
� y�

0

�1� g�
�
1ÿ y�

b�

�
dy� �33�

and Eq. (32) to

Nu4b � 12�1
0

�1� g�2 dZ3

� 12

�1� g�2mZ3

�34�

where (1+g )2mZ3 symbolizes the integrated-mean value
of (1+g )2 with respect to Z 3. Using g from Eq. (23)
gives Nu4b=140/17=8.235 for laminar ¯ow, while the

values of g from Eq. (28) lead to the values of Nu4b
listed in Table 3 for Pr=0.
For Pr=Prt, Eq. (30) reduces to

T � �
� y�

0

�1� g��1ÿ �u 0v 0����
�
1ÿ y�

b�

�
dy� �35�

which di�ers from Eq. (2) for u+ only by virtue of the
factor (1+g ) in the integrand. Because of the di�er-
ence between the shear stress ratio, t/tw, and the heat

¯ux density ratio, j/jw, the dimensionless temperature
distribution di�ers from the dimensionless velocity dis-
tribution even for Pr=Prt. Eq. (32), on the other

hand, reduces to

Nu4b � 12�1
0

�1� g�2�1ÿ �u 0v 0����dZ3

�36�

The factor (1+g )2 in Eq. (36) represents the combined
e�ects of the heat ¯ux density distribution and the

time-averaged velocity distribution. Values of Nu4b
computed from Eq. (36) using �u 0v 0��� from Eq. (4)
and (1+g ) from Eq. (28) are included in Table 3
under the heading Pr=0.867.

Eq. (36) when rewritten as

Nu4b �

120BBB@
�1
0

�1� g�2�1ÿ �u 0v 0����dZ3�1
0

�1ÿ �u 0v 0����dZ3

1CCCA
 �1

0

�1ÿ �u 0v 0����dZ3

!

�37�

may be recognized by virtue of Eq. (3) as exactly
equivalent to

Nu4b �
Re4b

�
f

2

�
�1� g�2wmZ3

�38�

where �1� g�2wmZ3 symbolizes the integrated-mean value
of (1+g )2, weighted by �1ÿ �u 0v 0����, with respect
to Z 3. Thus, the Reynolds analogy is applicable

functionally for Pr=Prt30.867 rather than for

Table 2

Computed values of g

y+ y+/b+ b+

<60 500 1000 5000 10,000 50,000

0 0 0 0 0 0 0

1 ± 0.0019555 0.0009788 0.0001963 0.0000982 0.0000197

5 ± 0.0087835 0.0044252 0.0009003 0.0004531 0.0000918

10 ± 0.0153083 0.0077876 0.0016167 0.0008193 0.0001684

20 ± 0.0245231 0.0127000 0.0027342 0.0014038 0.0002954

0.1 0.095 0.0436646 0.0370390 0.0290813 0.0270209 0.0234252

0.2 0.180 0.0679830 0.0591629 0.0477073 0.0444846 0.0386064

0.3 0.255 0.0883069 0.0777222 0.0633341 0.0591335 0.0512598

0.4 0.320 0.1060406 0.0939226 0.0769753 0.0719213 0.0622138

0.5 0.375 0.1215199 0.1080674 0.0888811 0.0830525 0.0722107

0.6 0.420 0.1347398 0.1201462 0.0990406 0.0925913 0.0801369

0.7 0.455 0.1455271 0.1300031 0.1073300 0.1003501 0.0860703

0.8 0.480 0.1536278 0.1374031 0.1135108 0.1061109 0.0911335

0.9 0.495 0.1587318 0.1420678 0.1174209 0.1097183 0.0940324

1.0 0.500 0.1605235 0.1437123 0.1189158 0.1112922 0.0974044
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Pr = 1, and even then is in numerical error by the
indicated factor. However, the computed values of

(1+g )2wmZ3=16(b+)2/Re4b Nu4b {0.867} in Table 3 may
be observed to di�er only slightly from unity owing to
the partial compensation of the local values of (1+g )2

and �1ÿ �u 0v 0����: Eqs. (18) and (19) with Nu4b and
Re4b replacing Nub and Reb are directly applicable for
large Pr and Pr41, respectively.

Eqs. (30)±(34) may be considered to be exact and,
insofar as the postulated independence of Prt from y+

is valid, Eqs. (35)±(38) and the adapted versions of

Eqs. (18) and (19) as well.
For the same reasons as discussed in connection

with heat transfer between the plates, the use of Prt
from Eq. (10) in Eq. (32) might be expected to provide

a reasonable approximation for Nu2b for all values of
Pr. Values of Nu so-calculated for a series of values
of Pr and b+ are included in Table 3. Those for

large values of Pr are expressed in terms of
Nu4b/0.07752Pr

1/3 Re4b ( f/2)
1/2 in order to reduce their

magnitude and reveal their approach to the asympto-

tic expression for Pr 4 1. The approximate values
in Table 3 for Pr = 0.001, 0.01, 0.1, 0.7, 1.0, 10,
100, 1000, 10,000 and 25,000 appear to be consistent

with the more certain values for Pr = 0, 0.867
and 1, just as they were for the other mode of
heating.

3.4. Prior values

Kays and Leung [11] derived perhaps the most accu-

rate prior values for convection in turbulent ¯ow
between parallel plates. They solved by a ®nite-di�er-
ence method the equivalent of Eq. (8) expressed in

terms of the time±mean velocity rather than j/jw, and
the eddy viscosity rather than the local turbulent shear
stress. They utilized empirical expressions for the tur-

bulent Prandtl number and separate and thereby
incongruent expressions for the time±mean velocity
and the eddy viscosity. These results are for Re4b=104,
3 � 104, 105, 3 � 105 and 106, a series of values of Pr

from 0 to 1000, and arbitrary ratios of uniform heating
on the two plates. Some of these values for Nu4b for
equal uniform heating with Pr = 0, Pr = 0.867 (as in-

terpolated between Pr = 0.7 and 1.0) and Pr = 1000
are compared in Table 4 with values obtained from the
essentially exact predictions herein. The small di�er-

ences for Pr = 0 are presumed to be a consequence of
the improved velocity distribution utilized in the cur-
rent work since the turbulent Prandtl number and
eddy viscosity phase out in this limit. The somewhat

greater discrepancies for Pr = 0.867 and 1000 are pre-
sumed to be a consequence of improvements in the
representation of the rate of turbulent transport, as

well as the velocity distribution in the work herein.

Table 3

Predicted Nusselt numbers for fully developed convection in turbulent ¯ow between uniformly heated platesa

Nu4b for small values of Pr

b+ Re4b� 10ÿ3 Pr 16b+2/Re4b (1+g )2wmZ3

0 0.001 0.01 0.10 0.70 0.867

< 60 < 2.60 8.235 8.235 8.235 8.235 8.235 8.235 12.0000 1.4572

500 37.116 10.432 10.448 11.465 28.931 90.400 101.34 107.770 1.0634

1000 81.249 10.609 10.642 12.758 46.659 166.28 187.95 196.926 1.0478

5000 482.64 10.854 11.026 21.154 162.428 701.57 804.73 828.775 1.0299

10,000 1029.5 10.927 11.272 30.312 288.010 1314.42 1515.26 1554.21 1.0257

50,000 5885.5 11.066 12.777 89.955 1141.89 5731.60 6667.95 6796.33 1.0193

Nu4b/0.07752Re4b ( f/2)
1/2 Pr 1/3 for large values of Pr

b+ Re4b� 10ÿ3 Pr

1.0 10 100 1000 10,000 25,000

500 37.116 0.68999 0.84005 0.97529 0.99005 0.99852 0.99951

1000 81.249 0.63973 0.82007 0.96726 0.98758 0.99795 0.99937

5000 482.64 0.56516 0.80005 0.96255 0.98503 0.99795 0.99899

10,000 1029.5 0.52146 0.77062 0.95988 0.98251 0.99777 0.99890

50,000 5885.5 0.46285 0.74997 0.95487 0.98096 0.99756 0.99808

a Values of Re4b based on Eq. (6).
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4. Conclusions

The integral expressions derived and utilized herein

for u+ and u+m=(2/f )1/2 are exact for invariant physi-

cal properties insofar as fully developed ¯ow is

attained. The rate of transport of momentum predicted

by Eq. (4) is presumed to be more accurate than any

prior expressions in terms of the eddy viscosity or the

mixing length. The smoothing that results from evalu-

ation of the integrals in Eqs. (2) and (3) reduces the

slight inaccuracy of Eq. (4) and results in even more

accurate values of u+ and u+m=(2/f )1/2. Such values

are presumed to be an improvement on all prior theor-

etical results, at least for b+ > 500 (Re4b > 37,116).

Although some additional error is necessarily intro-

duced by the empirical correlation of these computed

values by Eqs. (5) and (6), the later expressions are

nevertheless presumed to be more accurate than any

prior correlating equations (those based on experimen-

tal values are free from an erroneous expression for j/

jw but necessarily re¯ect any non-random errors in the

measurements as well as those of form).

The corresponding integral expressions for T+ and

Nu, namely Eqs. (11) and (12) for heat transfer

between the plates, and Eqs. (30) and (32) for heat

transfer to the ¯uid stream, are also exact for invariant

properties insofar as fully developed convection is

attained and viscous dissipation is negligible. The fac-

tor 1+g that appears in the integrand for heating from

both plates introduces negligible error because of the

smoothing that results from the integration of �u 0v 0���
by means of which it is evaluated, but the current

uncertainty in the turbulent Prandtl results in an as-

sociated uncertainty in the computed values of the

Nusselt number for both thermal boundary conditions.

Hence, the numerical results presented herein are sub-

ject to future improvement when the dependence of

the turbulent Prandtl number on Pr and �u 0v 0��� or

y+ and b+ becomes known with greater certainty.

Even so, the values predicted using Eqs. (12) and (32)

with �u 0v 0��� from Eq. (4) and Prt from Eq. (10), and
in the latter case with g from Eqs. (28) and (29) are
presumed to be more accurate than any prior predic-
tions for Pr = 0 and Pr = 0.867 and probably for all

other values of Pr as well.
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